/* Copyright (c) 2021 Alex Diener This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Alex Diener alex@ludobloom.com */ #include "audiosynth/AmplitudeEnvelope_pulse.h" #include "utilities/lookup3.h" #include #define stemobject_implementation AmplitudeEnvelope_pulse stemobject_vtable_begin(); stemobject_vtable_entry(dispose); stemobject_vtable_entry(copy); stemobject_vtable_entry(isEqual); stemobject_vtable_entry(hash); stemobject_vtable_entry(initState); stemobject_vtable_entry(disposeState); stemobject_vtable_entry(getLength); stemobject_vtable_entry(getPropertyCount); stemobject_vtable_entry(getPropertyAtIndex); stemobject_vtable_entry(getPropertyValueStateless); stemobject_vtable_entry(setPropertyValue); stemobject_vtable_entry(sample); stemobject_vtable_end(); AmplitudeEnvelope_pulse * AmplitudeEnvelope_pulse_create(float cycleCount, float maxAmplitude, float minAmplitude, float startPhase, float attackTime, float sustainTime, float releaseTime, float restTime) { stemobject_create_implementation(init, cycleCount, maxAmplitude, minAmplitude, startPhase, attackTime, sustainTime, releaseTime, restTime) } bool AmplitudeEnvelope_pulse_init(AmplitudeEnvelope_pulse * self, float cycleCount, float maxAmplitude, float minAmplitude, float startPhase, float attackTime, float sustainTime, float releaseTime, float restTime) { call_super(init, self, maxAmplitude, 1.0f); self->cycleCount = cycleCount; self->minAmplitude = minAmplitude; self->startPhase = startPhase; self->attackTime = attackTime; self->sustainTime = sustainTime; self->releaseTime = releaseTime; self->restTime = restTime; return true; } void AmplitudeEnvelope_pulse_dispose(AmplitudeEnvelope_pulse * self) { call_super_virtual(dispose, self); } AmplitudeEnvelope_pulse * AmplitudeEnvelope_pulse_copy(AmplitudeEnvelope_pulse * self) { stemobject_copy_implementation(initCopy) } bool AmplitudeEnvelope_pulse_isEqual(AmplitudeEnvelope_pulse * self, compat_type(AmplitudeEnvelope_pulse *) compareUntyped) { AmplitudeEnvelope_pulse * compare = compareUntyped; if (!call_super_virtual(isEqual, self, compare)) { return false; } return compare->cycleCount == self->cycleCount && compare->minAmplitude == self->minAmplitude && compare->startPhase == self->startPhase && compare->attackTime == self->attackTime && compare->sustainTime == self->sustainTime && compare->releaseTime == self->releaseTime && compare->restTime == self->restTime; } uint32_t AmplitudeEnvelope_pulse_hash(AmplitudeEnvelope_pulse * self, uint32_t initval) { initval = hashlittle(&self->cycleCount, sizeof(self->cycleCount), initval); initval = hashlittle(&self->minAmplitude, sizeof(self->minAmplitude), initval); initval = hashlittle(&self->startPhase, sizeof(self->startPhase), initval); initval = hashlittle(&self->attackTime, sizeof(self->attackTime), initval); initval = hashlittle(&self->sustainTime, sizeof(self->sustainTime), initval); initval = hashlittle(&self->releaseTime, sizeof(self->releaseTime), initval); initval = hashlittle(&self->restTime, sizeof(self->restTime), initval); return initval; } void AmplitudeEnvelope_pulse_initCopy(AmplitudeEnvelope_pulse * self, AmplitudeEnvelope_pulse * original) { call_super(initCopy, self, (AmplitudeEnvelope *) original); self->cycleCount = original->cycleCount; self->minAmplitude = original->minAmplitude; self->startPhase = original->startPhase; self->attackTime = original->attackTime; self->sustainTime = original->sustainTime; self->releaseTime = original->releaseTime; self->restTime = original->restTime; } #define PROPERTY_INDEX_MAX_AMPLITUDE 0 #define PROPERTY_INDEX_MIN_AMPLITUDE 1 #define PROPERTY_INDEX_START_PHASE 2 #define PROPERTY_INDEX_ATTACK_TIME 3 #define PROPERTY_INDEX_SUSTAIN_TIME 4 #define PROPERTY_INDEX_RELEASE_TIME 5 #define PROPERTY_INDEX_REST_TIME 6 struct AmplitudeEnvelope_pulse_state { float properties[7]; }; SamplerObject_state * AmplitudeEnvelope_pulse_initState(AmplitudeEnvelope_pulse * self) { struct AmplitudeEnvelope_pulse_state * stateStruct = malloc(sizeof(*stateStruct)); stateStruct->properties[PROPERTY_INDEX_MAX_AMPLITUDE] = self->baseAmplitude; stateStruct->properties[PROPERTY_INDEX_MIN_AMPLITUDE] = self->minAmplitude; stateStruct->properties[PROPERTY_INDEX_START_PHASE] = self->startPhase; stateStruct->properties[PROPERTY_INDEX_ATTACK_TIME] = self->attackTime; stateStruct->properties[PROPERTY_INDEX_SUSTAIN_TIME] = self->sustainTime; stateStruct->properties[PROPERTY_INDEX_RELEASE_TIME] = self->releaseTime; stateStruct->properties[PROPERTY_INDEX_REST_TIME] = self->restTime; return stateStruct; } void AmplitudeEnvelope_pulse_disposeState(AmplitudeEnvelope_pulse * self, SamplerObject_state * state) { free(state); } float AmplitudeEnvelope_pulse_getLength(AmplitudeEnvelope_pulse * self) { if (self->cycleCount < 0.0f) { return 1.0f; } return self->cycleCount * (self->attackTime + self->sustainTime + self->releaseTime + self->restTime); } static SynthProperty synthProperties[7]; static void initSynthProperties(void) { SYNTH_PROPERTY(PROPERTY_INDEX_MAX_AMPLITUDE, baseAmplitude, "Max amplitude", 0.0f, 1.0f, 0.5f, 0.05f) SYNTH_PROPERTY(PROPERTY_INDEX_MIN_AMPLITUDE, minAmplitude, "Min amplitude", 0.0f, 1.0f, 0.0f, 0.05f) SYNTH_PROPERTY(PROPERTY_INDEX_START_PHASE, startPhase, "Start phase", 0.0f, 1.0f, 0.0f, 0.05f) SYNTH_PROPERTY(PROPERTY_INDEX_ATTACK_TIME, attackTime, "Attack", 0.0f, 0.1f, 0.001f, 0.05f) SYNTH_PROPERTY(PROPERTY_INDEX_SUSTAIN_TIME, sustainTime, "Sustain", 0.0f, 0.1f, 0.01f, 0.05f) SYNTH_PROPERTY(PROPERTY_INDEX_RELEASE_TIME, releaseTime, "Release", 0.0f, 0.1f, 0.001f, 0.05f) SYNTH_PROPERTY(PROPERTY_INDEX_REST_TIME, restTime, "Rest", 0.0f, 0.1f, 0.01f, 0.05f) } SYNTH_PROPERTY_FUNCTION_IMPLEMENTATIONS() float AmplitudeEnvelope_pulse_getPropertyValueStateless(AmplitudeEnvelope_pulse * self, SynthPropertyIdentifier propertyIdentifier) { switch (propertyIdentifier.propertyIndex) { case PROPERTY_INDEX_MAX_AMPLITUDE: return self->baseAmplitude; case PROPERTY_INDEX_MIN_AMPLITUDE: return self->minAmplitude; case PROPERTY_INDEX_START_PHASE: return self->startPhase; case PROPERTY_INDEX_ATTACK_TIME: return self->attackTime; case PROPERTY_INDEX_SUSTAIN_TIME: return self->sustainTime; case PROPERTY_INDEX_RELEASE_TIME: return self->releaseTime; case PROPERTY_INDEX_REST_TIME: return self->restTime; } return 0.0f; } void AmplitudeEnvelope_pulse_setPropertyValue(AmplitudeEnvelope_pulse * self, SamplerObject_state * state, SynthPropertyIdentifier propertyIdentifier, float value) { struct AmplitudeEnvelope_pulse_state * stateStruct = state; stateStruct->properties[propertyIdentifier.propertyIndex] = value; } float AmplitudeEnvelope_pulse_sample(AmplitudeEnvelope_pulse * self, SamplerObject_state * state, float phase, float phaseDelta, float time, float timeDelta) { struct AmplitudeEnvelope_pulse_state * stateStruct = state; float maxAmplitude = stateStruct->properties[PROPERTY_INDEX_MAX_AMPLITUDE]; float minAmplitude = stateStruct->properties[PROPERTY_INDEX_MIN_AMPLITUDE]; float startPhase = stateStruct->properties[PROPERTY_INDEX_START_PHASE]; float attackTime = stateStruct->properties[PROPERTY_INDEX_ATTACK_TIME]; float sustainTime = stateStruct->properties[PROPERTY_INDEX_SUSTAIN_TIME]; float releaseTime = stateStruct->properties[PROPERTY_INDEX_RELEASE_TIME]; float restTime = stateStruct->properties[PROPERTY_INDEX_REST_TIME]; float stride = attackTime + sustainTime + releaseTime + restTime; if (self->cycleCount >= 0.0f && (time + startPhase * stride) / stride > self->cycleCount) { return minAmplitude; } float phaseTime = fmodf(time + startPhase * stride, stride); float amplitudeSpread = maxAmplitude - minAmplitude; return amplitudeSpread * phaseTime / (attackTime + (attackTime == 0.0f)) * (phaseTime < attackTime) + amplitudeSpread * (phaseTime >= attackTime && phaseTime < attackTime + sustainTime) + amplitudeSpread * (1.0f - (phaseTime - attackTime - sustainTime) / (releaseTime + (releaseTime == 0.0f))) * (phaseTime >= attackTime + sustainTime && phaseTime <= attackTime + sustainTime + releaseTime) + minAmplitude; }