/* Copyright (c) 2018 Alex Diener This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Alex Diener alex@ludobloom.com */ //#include "3dmodelio/MeshConfigurationDataSurfaceMaterial.h" #include "3dmodelio/Obj3DModelIO.h" #include "gamemath/Vector3f.h" #include "gamemath/Vector3i.h" #include "utilities/IOUtilities.h" #include #include enum ObjToken { OBJ_TOKEN_UNKNOWN = -1, OBJ_TOKEN_COMMENT, // # OBJ_TOKEN_VERTEX, // v OBJ_TOKEN_NORMAL, // vn OBJ_TOKEN_TEXTURE_COORD, // vt OBJ_TOKEN_FACE, // f OBJ_TOKEN_MTLLIB, // mtllib OBJ_TOKEN_USEMTL, // usemtl OBJ_TOKEN_OBJECT, // o OBJ_TOKEN_GROUP, // g OBJ_TOKEN_SMOOTH_SHADING // s }; static void skipWhitespace(const char * data, size_t length, size_t * ioCharIndex) { while (*ioCharIndex < length && (data[*ioCharIndex] == ' ' || data[*ioCharIndex] == '\t')) { ++*ioCharIndex; } } static void skipToNextLine(const char * data, size_t length, size_t * ioCharIndex) { while (*ioCharIndex < length && (data[*ioCharIndex] != '\r' && data[*ioCharIndex] != '\n')) { ++*ioCharIndex; } while (*ioCharIndex < length && (data[*ioCharIndex] == '\r' || data[*ioCharIndex] == '\n')) { ++*ioCharIndex; } } static enum ObjToken readObjToken(const char * data, size_t length, size_t * ioCharIndex) { size_t lastCharIndex = *ioCharIndex, tokenLength; if (data[lastCharIndex] == '#') { ++*ioCharIndex; return OBJ_TOKEN_COMMENT; } while (*ioCharIndex < length && (data[*ioCharIndex] != ' ' && data[*ioCharIndex] != '\t' && data[*ioCharIndex] != '\r' && data[*ioCharIndex] != '\n')) { ++*ioCharIndex; } tokenLength = *ioCharIndex - lastCharIndex; if (tokenLength == 1 && data[lastCharIndex] == 'v') { return OBJ_TOKEN_VERTEX; } if (tokenLength == 2 && !strncmp(data + lastCharIndex, "vn", tokenLength)) { return OBJ_TOKEN_NORMAL; } if (tokenLength == 2 && !strncmp(data + lastCharIndex, "vt", tokenLength)) { return OBJ_TOKEN_TEXTURE_COORD; } if (tokenLength == 1 && data[lastCharIndex] == 'f') { return OBJ_TOKEN_FACE; } if (tokenLength == 6 && !strncmp(data + lastCharIndex, "mtllib", tokenLength)) { return OBJ_TOKEN_MTLLIB; } if (tokenLength == 6 && !strncmp(data + lastCharIndex, "usemtl", tokenLength)) { return OBJ_TOKEN_USEMTL; } if (tokenLength == 1 && data[lastCharIndex] == 'o') { return OBJ_TOKEN_OBJECT; } if (tokenLength == 1 && data[lastCharIndex] == 'g') { return OBJ_TOKEN_GROUP; } if (tokenLength == 1 && data[lastCharIndex] == 's') { return OBJ_TOKEN_SMOOTH_SHADING; } return OBJ_TOKEN_UNKNOWN; } // TODO: Possibly unsafe for nonterminated strings static float readFloat(const char * data, size_t length, size_t * ioCharIndex) { char * endPtr; float value; value = strtof(data + *ioCharIndex, &endPtr); if (endPtr == data + *ioCharIndex) { return nanf(""); } *ioCharIndex += endPtr - (data + *ioCharIndex); return value; } static int readInt(const char * data, size_t length, size_t * ioCharIndex) { char * endPtr; int value; value = (int) strtol(data + *ioCharIndex, &endPtr, 10); if (endPtr == data + *ioCharIndex) { return 0; } *ioCharIndex += endPtr - (data + *ioCharIndex); return value; } static void readFaceVertex(const char * data, size_t length, size_t * ioCharIndex, int * outFaceVertex) { outFaceVertex[0] = readInt(data, length, ioCharIndex); if (data[*ioCharIndex] == '/') { ++*ioCharIndex; if (data[*ioCharIndex] == '/') { outFaceVertex[1] = 0; } else { outFaceVertex[1] = readInt(data, length, ioCharIndex); } if (data[*ioCharIndex] == '/') { ++*ioCharIndex; outFaceVertex[2] = readInt(data, length, ioCharIndex); } else { outFaceVertex[2] = 0; } } else { outFaceVertex[1] = 0; outFaceVertex[2] = 0; } } static char * readString(const char * data, size_t length, size_t * ioCharIndex) { size_t lastCharIndex = *ioCharIndex; char * result; while (*ioCharIndex < length && (data[*ioCharIndex] != '\r' && data[*ioCharIndex] != '\n')) { ++*ioCharIndex; } result = malloc(*ioCharIndex - lastCharIndex + 1); memcpy(result, data + lastCharIndex, *ioCharIndex - lastCharIndex); result[*ioCharIndex - lastCharIndex] = '\x00'; return result; } MeshData * Obj3DModelIO_loadFile(const char * filePath) { char * fileContents; size_t fileLength = 0; MeshData * result; fileContents = readFileSimple(filePath, &fileLength); if (fileContents == NULL) { return NULL; } result = Obj3DModelIO_loadData(fileContents, fileLength); free(fileContents); return result; } MeshData * Obj3DModelIO_loadResourceFile(const char * fileID) { char * fileContents; size_t fileLength = 0; MeshData * result; fileContents = readResourceFile(fileID, &fileLength); if (fileContents == NULL) { return NULL; } result = Obj3DModelIO_loadData(fileContents, fileLength); free(fileContents); return result; } MeshData * Obj3DModelIO_loadData(const char * data, size_t length) { size_t charIndex = 0; char * objectName = NULL; size_t positionCount = 0, positionAllocatedCount = 512; Vector3f * positions = malloc(sizeof(Vector3f) * positionAllocatedCount); size_t normalCount = 0, normalAllocatedCount = 512; Vector3f * normals = malloc(sizeof(Vector3f) * normalAllocatedCount); size_t texCoordCount = 0, texCoordAllocatedCount = 512; Vector2f * texCoords = malloc(sizeof(Vector2f) * texCoordAllocatedCount); size_t faceCount = 0, faceAllocatedCount = 512; int * faces = malloc(sizeof(int) * faceAllocatedCount * 9); // TODO: This code is unsafe for malformed obj files for (;;) { skipWhitespace(data, length, &charIndex); if (charIndex >= length) { break; } enum ObjToken token = readObjToken(data, length, &charIndex); switch (token) { case OBJ_TOKEN_COMMENT: case OBJ_TOKEN_MTLLIB: case OBJ_TOKEN_USEMTL: case OBJ_TOKEN_GROUP: case OBJ_TOKEN_SMOOTH_SHADING: case OBJ_TOKEN_UNKNOWN: skipToNextLine(data, length, &charIndex); break; case OBJ_TOKEN_OBJECT: skipWhitespace(data, length, &charIndex); if (objectName != NULL) { free(objectName); } objectName = readString(data, length, &charIndex); break; case OBJ_TOKEN_VERTEX: { Vector3f position; skipWhitespace(data, length, &charIndex); position.x = readFloat(data, length, &charIndex); skipWhitespace(data, length, &charIndex); position.y = readFloat(data, length, &charIndex); skipWhitespace(data, length, &charIndex); position.z = readFloat(data, length, &charIndex); if (positionCount >= positionAllocatedCount) { positionAllocatedCount *= 2; positions = realloc(positions, positionAllocatedCount * sizeof(*positions)); } positions[positionCount++] = position; skipToNextLine(data, length, &charIndex); break; } case OBJ_TOKEN_NORMAL: { Vector3f normal; skipWhitespace(data, length, &charIndex); normal.x = readFloat(data, length, &charIndex); skipWhitespace(data, length, &charIndex); normal.y = readFloat(data, length, &charIndex); skipWhitespace(data, length, &charIndex); normal.z = readFloat(data, length, &charIndex); if (normalCount >= normalAllocatedCount) { normalAllocatedCount *= 2; normals = realloc(normals, normalAllocatedCount * sizeof(*normals)); } normals[normalCount++] = normal; skipToNextLine(data, length, &charIndex); break; } case OBJ_TOKEN_TEXTURE_COORD: { Vector2f texCoord; skipWhitespace(data, length, &charIndex); texCoord.x = readFloat(data, length, &charIndex); skipWhitespace(data, length, &charIndex); texCoord.y = readFloat(data, length, &charIndex); if (texCoordCount >= texCoordAllocatedCount) { texCoordAllocatedCount *= 2; texCoords = realloc(texCoords, texCoordAllocatedCount * sizeof(*texCoords)); } texCoords[texCoordCount++] = texCoord; skipToNextLine(data, length, &charIndex); break; } case OBJ_TOKEN_FACE: { int face[9]; skipWhitespace(data, length, &charIndex); readFaceVertex(data, length, &charIndex, face); skipWhitespace(data, length, &charIndex); readFaceVertex(data, length, &charIndex, face + 3); skipWhitespace(data, length, &charIndex); readFaceVertex(data, length, &charIndex, face + 6); if (faceCount >= faceAllocatedCount) { faceAllocatedCount *= 2; faces = realloc(faces, sizeof(int) * faceAllocatedCount * 9); } faces[faceCount * 9 + 0] = face[0]; faces[faceCount * 9 + 1] = face[1]; faces[faceCount * 9 + 2] = face[2]; faces[faceCount * 9 + 3] = face[3]; faces[faceCount * 9 + 4] = face[4]; faces[faceCount * 9 + 5] = face[5]; faces[faceCount * 9 + 6] = face[6]; faces[faceCount * 9 + 7] = face[7]; faces[faceCount * 9 + 8] = face[8]; faceCount++; skipWhitespace(data, length, &charIndex); while (data[charIndex] != '\n' && data[charIndex] != '\r' && data[charIndex] != '#') { face[3] = face[6]; face[4] = face[7]; face[5] = face[8]; readFaceVertex(data, length, &charIndex, face + 6); if (faceCount >= faceAllocatedCount) { faceAllocatedCount *= 2; faces = realloc(faces, sizeof(int) * faceAllocatedCount * 9); } faces[faceCount * 9 + 0] = face[0]; faces[faceCount * 9 + 1] = face[1]; faces[faceCount * 9 + 2] = face[2]; faces[faceCount * 9 + 3] = face[3]; faces[faceCount * 9 + 4] = face[4]; faces[faceCount * 9 + 5] = face[5]; faces[faceCount * 9 + 6] = face[6]; faces[faceCount * 9 + 7] = face[7]; faces[faceCount * 9 + 8] = face[8]; faceCount++; skipWhitespace(data, length, &charIndex); } skipToNextLine(data, length, &charIndex); break; } } } struct vertex_p3f_t2f_n3f_c4f * vertices = malloc(faceCount * 3 * sizeof(*vertices)), vertex; uint32_t * indexes = malloc(sizeof(uint32_t) * faceCount * 3); vertex.color[0] = 1.0f; vertex.color[1] = 1.0f; vertex.color[2] = 1.0f; vertex.color[3] = 1.0f; for (size_t faceIndex = 0; faceIndex < faceCount; faceIndex++) { for (size_t vertexIndex = 0; vertexIndex < 3; vertexIndex++) { vertex.position[0] = positions[faces[faceIndex * 9 + vertexIndex * 3 + 0] - 1].x; vertex.position[1] = positions[faces[faceIndex * 9 + vertexIndex * 3 + 0] - 1].y; vertex.position[2] = positions[faces[faceIndex * 9 + vertexIndex * 3 + 0] - 1].z; if (faces[faceIndex * 9 + vertexIndex * 3 + 2] > 0 && faces[faceIndex * 9 + vertexIndex * 3 + 2] <= (int) texCoordCount) { vertex.texCoords[0] = texCoords[faces[faceIndex * 9 + vertexIndex * 3 + 2] - 1].x; vertex.texCoords[1] = texCoords[faces[faceIndex * 9 + vertexIndex * 3 + 2] - 1].y; } else { vertex.texCoords[0] = 0.0f; vertex.texCoords[1] = 0.0f; } if (faces[faceIndex * 9 + vertexIndex * 3 + 2] > 0 && faces[faceIndex * 9 + vertexIndex * 3 + 2] <= (int) normalCount) { vertex.normal[0] = normals[faces[faceIndex * 9 + vertexIndex * 3 + 2] - 1].x; vertex.normal[1] = normals[faces[faceIndex * 9 + vertexIndex * 3 + 2] - 1].y; vertex.normal[2] = normals[faces[faceIndex * 9 + vertexIndex * 3 + 2] - 1].z; } else { vertex.normal[0] = 0.0f; vertex.normal[1] = 0.0f; vertex.normal[2] = 0.0f; } vertices[faceIndex * 3 + vertexIndex] = vertex; indexes[faceIndex * 3 + vertexIndex] = faceIndex * 3 + vertexIndex; } } free(positions); free(normals); free(texCoords); free(faces); static VertexFormat * objVertexFormat; if (objVertexFormat == NULL) { VertexAttributeTypeSpec attributeTypeSpecs[] = { {"position", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_POSITION, 3}, {"texCoord", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_TEXTURE_COORDINATE, 2}, {"normal", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_NORMAL, 3}, {"color", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_COLOR, 4} }; objVertexFormat = VertexFormat_create(sizeof(attributeTypeSpecs) / sizeof(attributeTypeSpecs[0]), attributeTypeSpecs); } return MeshData_create(objectName, PRIMITIVE_TRIANGLES, "3d_static", NULL, 0, NULL, objVertexFormat, false, vertices, faceCount * 3, indexes, faceCount * 3); }