/* Copyright (c) 2018 Alex Diener This software is provided 'as-is', without any express or implied warranty. In no event will the authors be held liable for any damages arising from the use of this software. Permission is granted to anyone to use this software for any purpose, including commercial applications, and to alter it and redistribute it freely, subject to the following restrictions: 1. The origin of this software must not be misrepresented; you must not claim that you wrote the original software. If you use this software in a product, an acknowledgment in the product documentation would be appreciated but is not required. 2. Altered source versions must be plainly marked as such, and must not be misrepresented as being the original software. 3. This notice may not be removed or altered from any source distribution. Alex Diener alex@ludobloom.com */ #include "3dmodelio/MeshData.h" #include "renderer/Texture.h" #include "utilities/IOUtilities.h" #include "stem_core.h" #include #include #define stemobject_implementation MeshData v_begin(); v_func(dispose); v_end(); #define MESH_VERSION_0_SUPPORT 0 MeshData * MeshData_create(const char * name, unsigned int textureCount, const struct MeshData_texture * textures, unsigned int materialCount, const struct MeshData_material * materials, unsigned int partitionCount, const struct MeshData_partition * partitions, VertexFormat * vertexFormat, bool ownVertexFormat, unsigned int vertexCount, void * vertices, VertexBuffer_indexSize indexSize, unsigned int indexCount, void * indexes) { stemobject_create_implementation(init, name, textureCount, textures, materialCount, materials, partitionCount, partitions, vertexFormat, ownVertexFormat, vertexCount, vertices, indexSize, indexCount, indexes) } bool MeshData_init(MeshData * self, const char * name, unsigned int textureCount, const struct MeshData_texture * textures, unsigned int materialCount, const struct MeshData_material * materials, unsigned int partitionCount, const struct MeshData_partition * partitions, VertexFormat * vertexFormat, bool ownVertexFormat, unsigned int vertexCount, void * vertices, VertexBuffer_indexSize indexSize, unsigned int indexCount, void * indexes) { call_super(init, self); self->name = strdup_nullSafe(name); self->textureCount = textureCount; self->textures = memdup(textures, textureCount * sizeof(*textures)); for (unsigned int textureIndex = 0; textureIndex < textureCount; textureIndex++) { self->textures[textureIndex].name = strdup_nullSafe(textures[textureIndex].name); } self->materialCount = materialCount; self->materials = memdup(materials, materialCount * sizeof(*materials)); self->partitionCount = partitionCount; if (self->partitionCount == 0) { self->partitionCount = 1; self->partitions = malloc(self->partitionCount * sizeof(*self->partitions)); self->partitions[0].primitiveType = PRIMITIVE_TRIANGLES; self->partitions[0].indexCount = indexCount; self->partitions[0].materialIndex = 0; } else { self->partitions = memdup(partitions, partitionCount * sizeof(*partitions)); } self->vertexFormat = vertexFormat; self->private_ivar(vertexFormatOwned) = ownVertexFormat; self->vertices = vertices; self->vertexCount = vertexCount; self->indexSize = indexSize; self->indexes = indexes; self->indexCount = indexCount; return true; } void MeshData_dispose(MeshData * self) { free(self->name); if (self->private_ivar(vertexFormatOwned)) { VertexFormat_dispose(self->vertexFormat); } for (unsigned int textureIndex = 0; textureIndex < self->textureCount; textureIndex++) { free(self->textures[textureIndex].name); } free(self->textures); free(self->materials); free(self->partitions); free(self->vertices); free(self->indexes); call_super(dispose, self); } MeshData * MeshData_deserialize(compat_type(DeserializationContext *) deserializationContext) { stemobject_deserialize_implementation(loadSerializedData) } #define PRIMITIVE_TYPE_ENUM_VALUES { \ {"points", PRIMITIVE_POINTS}, \ {"lines", PRIMITIVE_LINES}, \ {"line_strip", PRIMITIVE_LINE_STRIP}, \ {"triangles", PRIMITIVE_TRIANGLES}, \ {"triangle_strip", PRIMITIVE_TRIANGLE_STRIP} \ } #define ATTRIBUTE_TYPE_ENUM_VALUES_LEGACY { \ {"float", ATTRIBUTE_TYPE_FLOAT_LEGACY}, \ {"int", ATTRIBUTE_TYPE_INT_LEGACY}, \ {"uint", ATTRIBUTE_TYPE_UINT_LEGACY} \ } #define ATTRIBUTE_TYPE_ENUM_VALUES { \ {"int8", ATTRIBUTE_TYPE_INT8}, \ {"int8_float", ATTRIBUTE_TYPE_INT8_FLOAT}, \ {"int8_norm", ATTRIBUTE_TYPE_INT8_NORM}, \ {"uint8", ATTRIBUTE_TYPE_UINT8}, \ {"uint8_float", ATTRIBUTE_TYPE_UINT8_FLOAT}, \ {"uint8_norm", ATTRIBUTE_TYPE_UINT8_NORM}, \ {"int16", ATTRIBUTE_TYPE_INT16}, \ {"int16_float", ATTRIBUTE_TYPE_INT16_FLOAT}, \ {"int16_norm", ATTRIBUTE_TYPE_INT16_NORM}, \ {"uint16", ATTRIBUTE_TYPE_UINT16}, \ {"uint16_float", ATTRIBUTE_TYPE_UINT16_FLOAT}, \ {"uint16_norm", ATTRIBUTE_TYPE_UINT16_NORM}, \ {"int32", ATTRIBUTE_TYPE_INT32}, \ {"int32_float", ATTRIBUTE_TYPE_INT32_FLOAT}, \ {"int32_norm", ATTRIBUTE_TYPE_INT32_NORM}, \ {"uint32", ATTRIBUTE_TYPE_UINT32}, \ {"uint32_float", ATTRIBUTE_TYPE_UINT32_FLOAT}, \ {"uint32_norm", ATTRIBUTE_TYPE_UINT32_NORM}, \ {"float", ATTRIBUTE_TYPE_FLOAT} \ } #define ATTRIBUTE_USAGE_ENUM_VALUES { \ {"unspecified", ATTRIBUTE_USAGE_UNSPECIFIED}, \ {"position", ATTRIBUTE_USAGE_POSITION}, \ {"normal", ATTRIBUTE_USAGE_NORMAL}, \ {"color", ATTRIBUTE_USAGE_COLOR}, \ {"texture_coordinate", ATTRIBUTE_USAGE_TEXTURE_COORDINATE}, \ {"texture_index", ATTRIBUTE_USAGE_TEXTURE_INDEX}, \ {"tangent", ATTRIBUTE_USAGE_TANGENT}, \ {"bone_index", ATTRIBUTE_USAGE_BONE_INDEX}, \ {"bone_weight", ATTRIBUTE_USAGE_BONE_WEIGHT} \ } bool MeshData_loadSerializedData(MeshData * self, compat_type(DeserializationContext *) deserializationContext) { DeserializationContext * context = deserializationContext; call_virtual(beginStructure, context, MESH_DATA_FORMAT_TYPE); const char * formatType = call_virtual(readString, context, "format_type"); if (context->status != SERIALIZATION_ERROR_OK || strcmp(formatType, MESH_DATA_FORMAT_TYPE)) { call_virtual(setError, context, SERIALIZATION_ERROR_FORMAT_TYPE_MISMATCH); return false; } uint16_t formatVersion = call_virtual(readUInt16, context, "format_version"); if (context->status != SERIALIZATION_ERROR_OK || formatVersion > MESH_DATA_FORMAT_VERSION) { call_virtual(setError, context, SERIALIZATION_ERROR_FORMAT_VERSION_TOO_NEW); return false; } const char * nameString = call_virtual(readStringNullable, context, "name"); VertexFormat * vertexFormat; unsigned int textureCount = 0; struct MeshData_texture * textures = NULL; unsigned int materialCount = 0; struct MeshData_material * materials = NULL; unsigned int partitionCount = 0; struct MeshData_partition * partitions = NULL; unsigned int indexSize; if (formatVersion == 0) { #if MESH_VERSION_0_SUPPORT const char * armatureName = call_virtual(readStringNullable, context, "armature"); call_virtual(readStringNullable, context, "material"); VertexAttributeTypeSpec attributeTypeSpecs[] = { {"position", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_POSITION, 3}, {"texCoord", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_TEXTURE_COORDINATE, 2}, {"normal", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_NORMAL, 3}, {"tangent", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_TANGENT, 4}, {"color", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_COLOR, 4}, {"boneID", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_BONE_INDEX, 4}, {"boneWeight", ATTRIBUTE_TYPE_FLOAT, ATTRIBUTE_USAGE_BONE_WEIGHT, 4} }; vertexFormat = VertexFormat_create(armatureName == NULL ? 5 : 7, attributeTypeSpecs); indexSize = INDEX_SIZE_UINT32; #else call_virtual(setError, context, SERIALIZATION_ERROR_FORMAT_VERSION_TOO_OLD); return false; #endif } else { Serialization_enumKeyValue primitiveTypeEnumValues[] = PRIMITIVE_TYPE_ENUM_VALUES; if (formatVersion < 3) { call_virtual(readEnumeration, context, "primitive_type", sizeof_count(primitiveTypeEnumValues), primitiveTypeEnumValues); } if (formatVersion < 2) { call_virtual(readStringNullable, context, "shader"); call_virtual(readStringNullable, context, "configuration_data"); } textureCount = call_virtual(beginArray, context, "textures"); if (textureCount > 0) { if (textureCount > MESH_DATA_TEXTURE_COUNT_MAX) { call_virtual(setError, context, SERIALIZATION_ERROR_ARRAY_COUNT_OUT_OF_RANGE); return false; } textures = malloc(textureCount * sizeof(*textures)); for (unsigned int textureIndex = 0; textureIndex < textureCount; textureIndex++) { call_virtual(beginStructure, context, NULL); if (formatVersion < 3) { call_virtual(readUInt8, context, "index"); } if (formatVersion >= 2) { textures[textureIndex].options = call_virtual(readUInt32, context, "options"); } else { textures[textureIndex].options = TEXTURE_OPTION_GENERATE_MIPMAPS | TEXTURE_OPTION_FILTER_ANISOTROPIC; } textures[textureIndex].name = (char *) call_virtual(readStringNullable, context, "name"); call_virtual(endStructure, context); } } call_virtual(endArray, context); if (formatVersion >= 3) { materialCount = call_virtual(beginArray, context, "materials"); if (materialCount > 0) { if (materialCount > MESH_DATA_MATERIAL_COUNT_MAX) { free(textures); call_virtual(setError, context, SERIALIZATION_ERROR_ARRAY_COUNT_OUT_OF_RANGE); return false; } materials = malloc(materialCount * sizeof(*materials)); for (unsigned int materialIndex = 0; materialIndex < materialCount; materialIndex++) { call_virtual(beginStructure, context, NULL); call_virtual(beginStructure, context, "diffuse"); materials[materialIndex].diffuseColor.red = call_virtual(readFloat, context, "red"); materials[materialIndex].diffuseColor.green = call_virtual(readFloat, context, "green"); materials[materialIndex].diffuseColor.blue = call_virtual(readFloat, context, "blue"); materials[materialIndex].diffuseColor.alpha = call_virtual(readFloat, context, "alpha"); call_virtual(endStructure, context); call_virtual(beginStructure, context, "specular"); materials[materialIndex].specularColor.red = call_virtual(readFloat, context, "red"); materials[materialIndex].specularColor.green = call_virtual(readFloat, context, "green"); materials[materialIndex].specularColor.blue = call_virtual(readFloat, context, "blue"); call_virtual(endStructure, context); call_virtual(beginStructure, context, "emissive"); materials[materialIndex].emissiveColor.red = call_virtual(readFloat, context, "red"); materials[materialIndex].emissiveColor.green = call_virtual(readFloat, context, "green"); materials[materialIndex].emissiveColor.blue = call_virtual(readFloat, context, "blue"); call_virtual(endStructure, context); materials[materialIndex].specularExponent = call_virtual(readFloat, context, "specular_exponent"); materials[materialIndex].specularFactor = call_virtual(readFloat, context, "specular_factor"); materials[materialIndex].metallicFactor = call_virtual(readFloat, context, "metallic_factor"); materials[materialIndex].roughnessFactor = call_virtual(readFloat, context, "roughness_factor"); materials[materialIndex].colorTextureIndex = call_virtual(readUInt8, context, "color_texture"); materials[materialIndex].normalTextureIndex = call_virtual(readUInt8, context, "normal_texture"); materials[materialIndex].occlusionTextureIndex = call_virtual(readUInt8, context, "occlusion_texture"); materials[materialIndex].metallicRoughnessTextureIndex = call_virtual(readUInt8, context, "metallic_roughness_texture"); materials[materialIndex].emissiveTextureIndex = call_virtual(readUInt8, context, "emissive_texture"); call_virtual(endStructure, context); } } call_virtual(endArray, context); partitionCount = call_virtual(beginArray, context, "partitions"); if (partitionCount > 0) { if (partitionCount > MESH_DATA_PARTITION_COUNT_MAX) { free(textures); free(materials); call_virtual(setError, context, SERIALIZATION_ERROR_ARRAY_COUNT_OUT_OF_RANGE); return false; } partitions = malloc(partitionCount * sizeof(*partitions)); for (unsigned int partitionIndex = 0; partitionIndex < partitionCount; partitionIndex++) { call_virtual(beginStructure, context, NULL); partitions[partitionIndex].primitiveType = call_virtual(readEnumeration, context, "primitive_type", sizeof_count(primitiveTypeEnumValues), primitiveTypeEnumValues); partitions[partitionIndex].indexCount = call_virtual(readUInt32, context, "index_count"); partitions[partitionIndex].materialIndex = call_virtual(readUInt16, context, "material"); call_virtual(endStructure, context); } } call_virtual(endArray, context); } unsigned int attributeCount = call_virtual(beginDictionary, context, "vertex_format"); if (attributeCount == 0) { free(textures); free(materials); free(partitions); call_virtual(setError, context, SERIALIZATION_ERROR_ARRAY_COUNT_OUT_OF_RANGE); return false; } VertexAttributeTypeSpec attributeTypes[attributeCount]; for (unsigned int attributeIndex = 0; attributeIndex < attributeCount; attributeIndex++) { attributeTypes[attributeIndex].name = call_virtual(readNextDictionaryKey, context); call_virtual(beginStructure, context, attributeTypes[attributeIndex].name); if (formatVersion >= 3) { Serialization_enumKeyValue attributeTypeEnumValues[] = ATTRIBUTE_TYPE_ENUM_VALUES; attributeTypes[attributeIndex].dataType = call_virtual(readEnumeration, context, "type", sizeof_count(attributeTypeEnumValues), attributeTypeEnumValues); } else { Serialization_enumKeyValue attributeTypeEnumValuesLegacy[] = ATTRIBUTE_TYPE_ENUM_VALUES_LEGACY; VertexAttributeDataTypeLegacy dataTypeLegacy = call_virtual(readEnumeration, context, "type", sizeof_count(attributeTypeEnumValuesLegacy), attributeTypeEnumValuesLegacy); switch (dataTypeLegacy) { case ATTRIBUTE_TYPE_INT_LEGACY: attributeTypes[attributeIndex].dataType = ATTRIBUTE_TYPE_INT32; break; case ATTRIBUTE_TYPE_UINT_LEGACY: attributeTypes[attributeIndex].dataType = ATTRIBUTE_TYPE_UINT32; break; case ATTRIBUTE_TYPE_FLOAT_LEGACY: attributeTypes[attributeIndex].dataType = ATTRIBUTE_TYPE_FLOAT; break; } } Serialization_enumKeyValue attributeUsageEnumValues[] = ATTRIBUTE_USAGE_ENUM_VALUES; attributeTypes[attributeIndex].usageHint = call_virtual(readEnumeration, context, "usage", sizeof_count(attributeUsageEnumValues), attributeUsageEnumValues); attributeTypes[attributeIndex].componentCount = call_virtual(readUInt8, context, "count"); call_virtual(endStructure, context); } call_virtual(endDictionary, context); if (context->status != SERIALIZATION_ERROR_OK) { free(textures); free(materials); free(partitions); return false; } vertexFormat = VertexFormat_create(attributeCount, attributeTypes); if (formatVersion >= 3) { indexSize = call_virtual(readUInt8, context, "index_size"); if (indexSize != INDEX_SIZE_UINT8 && indexSize != INDEX_SIZE_UINT16 && indexSize != INDEX_SIZE_UINT32) { free(textures); free(materials); free(partitions); call_virtual(setError, context, SERIALIZATION_ERROR_ILLEGAL_VALUE); return false; } } else { indexSize = INDEX_SIZE_UINT32; } } size_t verticesSize, indexesSize; const void * vertices = call_virtual(readBlob, context, "vertices", &verticesSize); const void * indexes = call_virtual(readBlob, context, "indexes", &indexesSize); call_virtual(endStructure, context); if (context->status != SERIALIZATION_ERROR_OK) { free(textures); return false; } unsigned int vertexCount = verticesSize / vertexFormat->bytesPerVertex; unsigned int indexCount = indexesSize / indexSize; if (partitionCount == 0) { partitionCount = 1; partitions = malloc(sizeof(*partitions)); partitions[0].primitiveType = PRIMITIVE_TRIANGLES; partitions[0].indexCount = indexCount; partitions[0].materialIndex = 0; } MeshData_init(self, nameString, textureCount, textures, materialCount, materials, partitionCount, partitions, vertexFormat, true, vertexCount, memdup(vertices, vertexCount * vertexFormat->bytesPerVertex), indexSize, indexCount, memdup(indexes, indexCount * indexSize)); return true; } void MeshData_serialize(MeshData * self, compat_type(SerializationContext *) serializationContext) { SerializationContext * context = serializationContext; call_virtual(beginStructure, context, MESH_DATA_FORMAT_TYPE); call_virtual(writeString, context, "format_type", MESH_DATA_FORMAT_TYPE); call_virtual(writeUInt16, context, "format_version", MESH_DATA_FORMAT_VERSION); call_virtual(writeStringNullable, context, "name", self->name); Serialization_enumKeyValue primitiveTypeEnumValues[] = PRIMITIVE_TYPE_ENUM_VALUES; call_virtual(beginArray, context, "textures"); for (unsigned int textureIndex = 0; textureIndex < self->textureCount; textureIndex++) { call_virtual(beginStructure, context, NULL); call_virtual(writeUInt32, context, "options", self->textures[textureIndex].options); call_virtual(writeStringNullable, context, "name", self->textures[textureIndex].name); call_virtual(endStructure, context); } call_virtual(endArray, context); call_virtual(beginArray, context, "materials"); for (unsigned int materialIndex = 0; materialIndex < self->materialCount; materialIndex++) { call_virtual(beginStructure, context, NULL); call_virtual(beginStructure, context, "diffuse"); call_virtual(writeFloat, context, "red", self->materials[materialIndex].diffuseColor.red); call_virtual(writeFloat, context, "green", self->materials[materialIndex].diffuseColor.green); call_virtual(writeFloat, context, "blue", self->materials[materialIndex].diffuseColor.blue); call_virtual(writeFloat, context, "alpha", self->materials[materialIndex].diffuseColor.alpha); call_virtual(endStructure, context); call_virtual(beginStructure, context, "specular"); call_virtual(writeFloat, context, "red", self->materials[materialIndex].specularColor.red); call_virtual(writeFloat, context, "green", self->materials[materialIndex].specularColor.green); call_virtual(writeFloat, context, "blue", self->materials[materialIndex].specularColor.blue); call_virtual(endStructure, context); call_virtual(beginStructure, context, "emissive"); call_virtual(writeFloat, context, "red", self->materials[materialIndex].emissiveColor.red); call_virtual(writeFloat, context, "green", self->materials[materialIndex].emissiveColor.green); call_virtual(writeFloat, context, "blue", self->materials[materialIndex].emissiveColor.blue); call_virtual(endStructure, context); call_virtual(writeFloat, context, "specular_exponent", self->materials[materialIndex].specularExponent); call_virtual(writeFloat, context, "specular_factor", self->materials[materialIndex].specularFactor); call_virtual(writeFloat, context, "metallic_factor", self->materials[materialIndex].metallicFactor); call_virtual(writeFloat, context, "roughness_factor", self->materials[materialIndex].roughnessFactor); call_virtual(writeUInt8, context, "color_texture", self->materials[materialIndex].colorTextureIndex); call_virtual(writeUInt8, context, "normal_texture", self->materials[materialIndex].normalTextureIndex); call_virtual(writeUInt8, context, "occlusion_texture", self->materials[materialIndex].occlusionTextureIndex); call_virtual(writeUInt8, context, "metallic_roughness_texture", self->materials[materialIndex].metallicRoughnessTextureIndex); call_virtual(writeUInt8, context, "emissive_texture", self->materials[materialIndex].emissiveTextureIndex); call_virtual(endStructure, context); } call_virtual(endArray, context); call_virtual(beginArray, context, "partitions"); for (unsigned int partitionIndex = 0; partitionIndex < self->partitionCount; partitionIndex++) { call_virtual(beginStructure, context, NULL); call_virtual(writeEnumeration, context, "primitive_type", self->partitions[partitionIndex].primitiveType, sizeof_count(primitiveTypeEnumValues), primitiveTypeEnumValues); call_virtual(writeUInt32, context, "index_count", self->partitions[partitionIndex].indexCount); call_virtual(writeUInt16, context, "material", self->partitions[partitionIndex].materialIndex); call_virtual(endStructure, context); } call_virtual(endArray, context); call_virtual(beginDictionary, context, "vertex_format"); for (unsigned int attributeIndex = 0; attributeIndex < self->vertexFormat->attributeCount; attributeIndex++) { call_virtual(beginStructure, context, self->vertexFormat->attributeTypes[attributeIndex].name); Serialization_enumKeyValue attributeTypeEnumValues[] = ATTRIBUTE_TYPE_ENUM_VALUES; call_virtual(writeEnumeration, context, "type", self->vertexFormat->attributeTypes[attributeIndex].dataType, sizeof_count(attributeTypeEnumValues), attributeTypeEnumValues); Serialization_enumKeyValue attributeUsageEnumValues[] = ATTRIBUTE_USAGE_ENUM_VALUES; call_virtual(writeEnumeration, context, "usage", self->vertexFormat->attributeTypes[attributeIndex].usageHint, sizeof_count(attributeUsageEnumValues), attributeUsageEnumValues); call_virtual(writeUInt8, context, "count", self->vertexFormat->attributeTypes[attributeIndex].componentCount); call_virtual(endStructure, context); } call_virtual(endDictionary, context); call_virtual(writeUInt8, context, "index_size", self->indexSize); call_virtual(writeBlob, context, "vertices", self->vertices, self->vertexCount * self->vertexFormat->bytesPerVertex); call_virtual(writeBlob, context, "indexes", self->indexes, self->indexCount * self->indexSize); call_virtual(endStructure, context); }